首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications
  • 本地全文:下载
  • 作者:Junyong Wang ; Qinglin Deng ; Mengjiao Li
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-09214-0
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Copper ferrites are emerging transition metal oxides that have potential applications in energy storage devices. However, it still lacks in-depth designing of copper ferrites based anode architectures with enhanced electroactivity for lithium-ion batteries. Here, we report a facile synthesis technology of copper ferrites anchored on reduced graphene oxide (CuFeO2@rGO and Cu/CuFe2O4@rGO) as the high-performance electrodes. In the resulting configuration, reduced graphene offers continuous conductive channels for electron/ion transfer and high specific surface area to accommodate the volume expansion of copper ferrites. Consequently, the sheet-on-sheet CuFeO2@rGO electrode exhibits a high reversible capacity (587 mAh g(-1) after 100 cycles at 200 mA g(-1)). In particular, Cu/CuFe2O4@rGO hybrid, which combines the advantages of nano-copper and reduced graphene, manifests a significant enhancement in lithium storage properties. It reveals superior rate capability (723 mAh g(-1) at 800 mA g(-1); 560 mAh g(-1) at 3200 mA g(-1)) and robust cycling capability (1102 mAh g(-1) after 250 cycles at 800 mA g(-1)). This unique structure design provides a strategy for the development of multivalent metal oxides in lithium storage device applications.
国家哲学社会科学文献中心版权所有