首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Three-dimensional Graphene with MoS 2 Nanohybrid as Potential Energy Storage/Transfer Device
  • 本地全文:下载
  • 作者:Kulvinder Singh ; Sushil Kumar ; Kushagra Agarwal
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-09266-2
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Portable and matured energy storage devices are in high demand for future flexible electronics. Flowery shaped MoS2 nanostructures with porous and flake like morphology was used to study the supercapacitive nature with specific capacitance (C sp ) of 169.37F/g, the energy density of 28.43 Wh/Kg and power density of 10.18 W/Kg. This nanoflower like architecture was decorated on 3D-graphene on Graphite electrode to design the solid-state-supercapacitor prototype device of dimensions of 23.6 × 22.4 × 0.6 mm(3) having considerable high Csp of 58.0F/g and energy density of 24.59 Wh/Kg, and power density of 8.8 W/Kg. Four fabricated supercapacitors were connected in series for real state practical demonstration using the light emitting diode that remains enlightened for 40 s by charging it only for 25 s. This study demonstrates the 3D-graphene/MoS2 nanohybrid has a quite high overall potential window nearly about 2.7 V (-1.5 to +1.2 V) in KOH-PVA medium which can be used for the development of solid-state supercapacitors thereby completely eliminating the need for any expensive ionic liquid mediums thus building an exciting potential for high-performance energy storage/transfer devices.
国家哲学社会科学文献中心版权所有