摘要:We report command electro-optical switching on photolithographically-patterned graphene into a high-density electrode pattern for a high-transmission in-plane-switching (IPS) liquid crystal device. A highly-effective liquid crystal photoalignment method is used to maximize the field-driven optical contrast of a prototyped device. A non-contact and low-temperature photoalignment allows delicate surface treatment required for successful processing of graphene layer into an IPS electrode structure. Electro-optic performance of the graphene-based single pixel laboratory IPS prototype demonstrates the application potential of graphene for liquid crystal electro-optic devices with complex and high-definition electrode patterns.