摘要:Metformin is a widely used anti-diabetic drug with potential anti-tumor activity. However, little is known about its global metabolic and transcriptional impacts on tumor cells. In current study, we performed a metabolic profiling on human-derived colon cancer LoVo cells treated by 10 mM metformin for 8, 24 and 48 h. An obvious time-dependent metabolic alteration was observed from 8 to 48 h, prior to the reduction of cell viability. A total of 47, 45 and 66 differential metabolites were identified between control and metformin-treated cells at three time points. Most of the metabolites were up-regulated at 8 h, but down-regulated at 24 and 48 h by metformin. These metabolites were mainly involved in carbohydrates, lipids, amino acids, vitamins and nucleotides metabolism pathways. Meanwhile, the transcirptomic profile revealed 134 and 3061 differentially expressed genes at 8 and 24 h by metformin. In addition to the cancer signaling pathways, expression of genes involved in cell energy metabolism pathways was significantly altered, which were further validated with genes in glucose metabolism pathway. Altogether, our current data indicate that metformin suppressed the proliferation of LoVo cells, which may be due to the modulation on cell energy metabolism at both metabolic and transcriptional levels in a time-dependent way.