首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Towards An Advanced Graphene-Based Magnetic Resonance Imaging Contrast Agent: Sub-acute Toxicity and Efficacy Studies in Small Animals
  • 本地全文:下载
  • 作者:Shruti Kanakia ; Jimmy Toussaint ; Dung Minh Hoang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • 期号:1
  • DOI:10.1038/srep17182
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Current clinical Gd3+-based T 1 magnetic resonance imaging (MRI) contrast agents (CAs) are suboptimal or unsuitable, especially at higher magnetic fields (>1.5 Tesla) for advanced MRI applications such as blood pool, cellular and molecular imaging. Herein, towards the goal of developing a safe and more efficacious high field T 1 MRI CA for these applications, we report the sub-acute toxicity and contrast enhancing capabilities of a novel nanoparticle MRI CA comprising of manganese (Mn2+) intercalated graphene nanoparticles functionalized with dextran (hereafter, Mangradex) in rodents. Sub-acute toxicology performed on rats intravenously injected with Mangradex at 1, 50 or 100 mg/kg dosages 3 times per week for three weeks indicated that dosages ≤50 mg/kg could serve as potential diagnostic doses. Whole body 7 Tesla MRI performed on mice injected with Mangradex at a potential diagnostic dose (25 mg/kg or 455 nanomoles Mn2+/kg; ~2 orders of magnitude lower than the paramagnetic ion concentration in a typical clinical dose) showed persistent (up to at least 2 hours) contrast enhancement in the vascular branches (Mn2+ concentration in blood at steady state = 300 ppb, per voxel = 45 femtomoles). The results lay the foundations for further development of Mangradex as a vascular and cellular/ molecular MRI probe.
国家哲学社会科学文献中心版权所有