首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Discovery of small molecule inhibitors of MyD88-dependent signaling pathways using a computational screen
  • 本地全文:下载
  • 作者:Mark A. Olson ; Michael S. Lee ; Teri L. Kissner
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • 期号:1
  • DOI:10.1038/srep14246
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:In this study, we used high-throughput computational screening to discover drug-like inhibitors of the host MyD88 protein-protein signaling interaction implicated in the potentially lethal immune response associated with Staphylococcal enterotoxins. We built a protein-protein dimeric docking model of the Toll-interleukin receptor (TIR)-domain of MyD88 and identified a binding site for docking small molecules. Computational screening of 5 million drug-like compounds led to testing of 30 small molecules; one of these molecules inhibits the TIR-TIR domain interaction and attenuates pro-inflammatory cytokine production in human primary cell cultures. Compounds chemically similar to this hit from the PubChem database were observed to be more potent with improved drug-like properties. Most of these 2nd generation compounds inhibit Staphylococcal enterotoxin B (SEB)-induced TNF-α, IFN-γ, IL-6, and IL-1β production at 2–10 μM in human primary cells. Biochemical analysis and a cell-based reporter assay revealed that the most promising compound, T6167923, disrupts MyD88 homodimeric formation, which is critical for its signaling function. Furthermore, we observed that administration of a single dose of T6167923 completely protects mice from lethal SEB-induced toxic shock. In summary, our in silico approach has identified anti-inflammatory inhibitors against in vitro and in vivo toxin exposure with promise to treat other MyD88-related pro-inflammatory diseases.
国家哲学社会科学文献中心版权所有