首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Quantitative assessment of single-cell whole genome amplification methods for detecting copy number variation using hippocampal neurons
  • 本地全文:下载
  • 作者:Luwen Ning ; Zhoufang Li ; Guan Wang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • 期号:1
  • DOI:10.1038/srep11415
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Single-cell genomic analysis has grown rapidly in recent years and finds widespread applications in various fields of biology, including cancer biology, development, immunology, pre-implantation genetic diagnosis, and neurobiology. To date, the amplification bias, amplification uniformity and reproducibility of the three major single cell whole genome amplification methods (GenomePlex WGA4, MDA and MALBAC) have not been systematically investigated using mammalian cells. In this study, we amplified genomic DNA from individual hippocampal neurons using three single-cell DNA amplification methods, and sequenced them at shallow depth. We then systematically evaluated the GC-bias, reproducibility, and copy number variations among individual neurons. Our results showed that single-cell genome sequencing results obtained from the MALBAC and WGA4 methods are highly reproducible and have a high success rate. The MALBAC displays significant biases towards high GC content. We then attempted to correct the GC bias issue by developing a bioinformatics pipeline, which allows us to call CNVs in single cell sequencing data, and chromosome level and sub-chromosomal level CNVs among individual neurons can be detected. We also proposed a metric to determine the CNV detection limits. Overall, MALBAC and WGA4 have better performance than MDA in detecting CNVs.
国家哲学社会科学文献中心版权所有