首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:TRRUST: a reference database of human transcriptional regulatory interactions
  • 本地全文:下载
  • 作者:Heonjong Han ; Hongseok Shim ; Donghyun Shin
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • 期号:1
  • DOI:10.1038/srep11432
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:The reconstruction of transcriptional regulatory networks (TRNs) is a long-standing challenge in human genetics. Numerous computational methods have been developed to infer regulatory interactions between human transcriptional factors (TFs) and target genes from high-throughput data, and their performance evaluation requires gold-standard interactions. Here we present a database of literature-curated human TF-target interactions, TRRUST ( t ranscriptional r egulatory r elationships u nravelled by s entence-based t ext-mining, http://www.grnpedia.org/trrust ), which currently contains 8,015 interactions between 748 TF genes and 1,975 non-TF genes. A sentence-based text-mining approach was employed for efficient manual curation of regulatory interactions from approximately 20 million Medline abstracts. To the best of our knowledge, TRRUST is the largest publicly available database of literature-curated human TF-target interactions to date. TRRUST also has several useful features: i) information about the mode-of-regulation; ii) tests for target modularity of a query TF; iii) tests for TF cooperativity of a query target; iv) inferences about cooperating TFs of a query TF; and v) prioritizing associated pathways and diseases with a query TF. We observed high enrichment of TF-target pairs in TRRUST for top-scored interactions inferred from high-throughput data, which suggests that TRRUST provides a reliable benchmark for the computational reconstruction of human TRNs.
国家哲学社会科学文献中心版权所有