摘要:Circadian rhythms are essential for health and are frequently disturbed in disease. A full understanding of the causal relationships between behavioural and molecular circadian rhythms requires simultaneous longitudinal observations over time in individual organisms. Current experimental paradigms require the measurement of each rhythm separately across distinct populations of experimental organisms, rendering the comparability of the resulting datasets uncertain. We therefore developed FLYGLOW, an assay using clock gene controlled luciferase expression detected by exquisitely sensitive EM-CCD imaging, to enable simultaneous quantification of parameters including locomotor, sleep consolidation and molecular rhythms in single flies over days/weeks. FLYGLOW combines all the strengths of existing techniques, and also allows powerful multiparametric paired statistics. We found the age-related transition from rhythmicity to arrhythmicity for each parameter occurs unpredictably, with some flies showing loss of one or more rhythms during middle-age. Using single-fly correlation analysis of rhythm robustness and period we demonstrated the independence of the peripheral clock from circadian behaviours in wild type flies as well as in an Alzheimer's model. FLYGLOW is a useful tool for investigating the deterioration of behavioural and molecular rhythms in ageing and neurodegeneration. This approach may be applied more broadly within behavioural neurogenetics research.