首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:A novel and highly sensitive nanocatalytic surface plasmon resonance-scattering analytical platform for detection of trace Pb ions
  • 本地全文:下载
  • 作者:Lingling Ye ; Guiqing Wen ; Huixiang Ouyang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep24150
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Gold nanoparticles (AuNP) have catalysis on the reaction of HAuCl4-H2O2. The produced AuNP have strong resonance Rayleigh scattering (RRS) effect and surface-enhanced resonance Raman scattering (SERS) effect when Victoria blue B (VBB) and rhodamine S (RhS) were used as probes. The increased RRS/SERS intensity respond linearly with the concentration of gold nanoparticles (AuNPB) which synthesized by NaBH4 over 0.038-76 ng/mL, 19-285 ng/mL, 3.8-456 ng/mL respectively. Four kinds of tested nanoparticles have catalysis on the HAuCl4-H2O2 particles reaction. Thus, a novel nanocatalysis surface plasmon resonance-scattering (SPR-S) analytical platform was developed for AuNP. The DNAzyme strand hybridized with the substrate strand to form double-stranded DNA (dsDNA) which couldn't protect AuNPc to aggregate to AuNPc aggregations, having strong RRS effect. Upon addition of Pb(2+), dsDNA could be cracked by Pb(2+) to produce single-stranded DNA (ssDNA) that adsorbed on the AuNPc surface to form AuNPc-ssDNA conjugates. The conjugates have strong catalysis on HAuCl4-H2O2 reaction. With increased Pb(2+) concentration, the concentration of AuNPc-ssDNA increased and lead to the catalytic activity stronger. The increased RRS intensity responds linearly with Pb(2+) concentration over 16.7-666.7 nmol/L. The SERS intensity responded linearly with the concentration of Pb(2+) over 50-500 nmol/L.
国家哲学社会科学文献中心版权所有