摘要:Chemotaxis and cell migration are fundamental, universal eukaryotic processes essential for biological functions such as embryogenesis, immunity, cell renewal, and wound healing, as well as for pathogenesis of many diseases including cancer metastasis and chronic inflammation. To identify novel chemotaxis inhibitors as probes for mechanistic studies and leads for development of new therapeutics, we developed a unique, unbiased phenotypic chemotaxis-dependent Dictyostelium aggregation assay for high-throughput screening using rapid, laser-scanning cytometry. Under defined conditions, individual Dictyostelium secrete chemoattractants, migrate, and aggregate. Chemotaxis is quantified by laser-scanning cytometry with a GFP marker expressed only in cells after chemotaxis/multi-cell aggregation. We applied the assay to screen 1,280 known compounds in a 1536-well plate format and identified two chemotaxis inhibitors. The chemotaxis inhibitory activities of both compounds were confirmed in both Dictyostelium and in human neutrophils in a directed EZ-TAXIscan chemotaxis assay. The compounds were also shown to inhibit migration of two human cancer cell lines in monolayer scratch assays. This test screen demonstrated that the miniaturized assay is extremely suited for high-throughput screening of very large libraries of small molecules to identify novel classes of chemotaxis/migratory inhibitors for drug development and research tools for targeting chemotactic pathways universal to humans and other systems.