首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Using a Machine Learning Approach to Predict Outcomes after Radiosurgery for Cerebral Arteriovenous Malformations
  • 本地全文:下载
  • 作者:Eric Karl Oermann ; Alex Rubinsteyn ; Dale Ding
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep21161
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Predictions of patient outcomes after a given therapy are fundamental to medical practice. We employ a machine learning approach towards predicting the outcomes after stereotactic radiosurgery for cerebral arteriovenous malformations (AVMs). Using three prospective databases, a machine learning approach of feature engineering and model optimization was implemented to create the most accurate predictor of AVM outcomes. Existing prognostic systems were scored for purposes of comparison. The final predictor was secondarily validated on an independent site's dataset not utilized for initial construction. Out of 1,810 patients, 1,674 to 1,291 patients depending upon time threshold, with 23 features were included for analysis and divided into training and validation sets. The best predictor had an average area under the curve (AUC) of 0.71 compared to existing clinical systems of 0.63 across all time points. On the heldout dataset, the predictor had an accuracy of around 0.74 at across all time thresholds with a specificity and sensitivity of 62% and 85% respectively. This machine learning approach was able to provide the best possible predictions of AVM radiosurgery outcomes of any method to date, identify a novel radiobiological feature (3D surface dose), and demonstrate a paradigm for further development of prognostic tools in medical care.
国家哲学社会科学文献中心版权所有