首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Pathway engineering of Propionibacterium jensenii for improved production of propionic acid
  • 本地全文:下载
  • 作者:Long Liu ; Ningzi Guan ; Gexin Zhu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep19963
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Propionic acid (PA) is an important chemical building block widely used in the food, pharmaceutical, and chemical industries. In our previous study, a shuttle vector was developed as a useful tool for engineering Propionibacterium jensenii , and two key enzymes—glycerol dehydrogenase and malate dehydrogenase—were overexpressed to improve PA titer. Here, we aimed to improve PA production further via the pathway engineering of P. jensenii . First, the phosphoenolpyruvate carboxylase gene ( ppc ) from Klebsiella pneumoniae was overexpressed to access the one-step synthesis of oxaloacetate directly from phosphoenolpyruvate without pyruvate as intermediate. Next, genes encoding lactate dehydrogenase ( ldh ) and pyruvate oxidase ( poxB ) were deleted to block the synthesis of the by-products lactic acid and acetic acid, respectively. Overexpression of ppc and deleting ldh improved PA titer from 26.95 ± 1.21 g·L−1 to 33.21 ± 1.92 g·L−1 and 30.50 ± 1.63 g·L−1, whereas poxB deletion decreased it. The influence of this pathway engineering on gene transcription, enzyme expression, NADH/NAD+ ratio, and metabolite concentration was also investigated. Finally, PA production in P. jensenii with ppc overexpression as well as ldh deletion was investigated, which resulted in further increases in PA titer to 34.93 ± 2.99 g·L−1 in a fed-batch culture.
国家哲学社会科学文献中心版权所有