首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Mouse models and strain-dependency of Chédiak-Higashi syndrome-associated neurologic dysfunction
  • 本地全文:下载
  • 作者:Adam Hedberg-Buenz ; Laura M. Dutca ; Demelza R. Larson
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-17
  • DOI:10.1038/s41598-019-42159-0
  • 出版社:Springer Nature
  • 摘要:Chédiak-Higashi syndrome (CHS) is a lethal disorder caused by mutations in the LYST gene that involves progressive neurologic dysfunction. Lyst-mutant mice exhibit neurologic phenotypes that are sensitive to genetic background. On the DBA/2J-, but not on the C57BL/6J-background, Lyst-mutant mice exhibit overt tremor phenotypes associated with loss of cerebellar Purkinje cells. Here, we tested whether assays for ataxia could measure this observed strain-dependency, and if so, establish parameters for empowering phenotype- and candidate-driven approaches to identify genetic modifier(s). A composite phenotypic scoring system distinguished phenotypes in Lyst-mutants and uncovered a previously unrecognized background difference between wild-type C57BL/6J and DBA/2J mice. Accelerating rotarod performance also distinguished phenotypes in Lyst-mutants, but at more advanced ages. These results establish that genetic background, Lyst genotype, and age significantly influence the severity of CHS-associated neurologic deficits. Purkinje cell quantifications likewise distinguished phenotypes of Lyst-mutant mice, as well as background differences between wild-type C57BL/6J and DBA/2J mice. To aid identification of potential genetic modifier genes causing these effects, we searched public datasets for cerebellar-expressed genes that are differentially expressed and/or contain potentially detrimental genetic variants. From these approaches, Nos1, Prdx2, Cbln3, Gnb1, Pttg1 were confirmed to be differentially expressed and leading candidates.
国家哲学社会科学文献中心版权所有