首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Cellular network entropy as the energy potential in Waddington's differentiation landscape
  • 本地全文:下载
  • 作者:Christopher R. S. Banerji ; Diego Miranda-Saavedra ; Simone Severini
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2013
  • 卷号:3
  • 期号:1
  • DOI:10.1038/srep03039
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Differentiation is a key cellular process in normal tissue development that is significantly altered in cancer. Although molecular signatures characterising pluripotency and multipotency exist, there is, as yet, no single quantitative mark of a cellular sample's position in the global differentiation hierarchy. Here we adopt a systems view and consider the sample's network entropy, a measure of signaling pathway promiscuity, computable from a sample's genome-wide expression profile. We demonstrate that network entropy provides a quantitative, in-silico, readout of the average undifferentiated state of the profiled cells, recapitulating the known hierarchy of pluripotent, multipotent and differentiated cell types. Network entropy further exhibits dynamic changes in time course differentiation data, and in line with a sample's differentiation stage. In disease, network entropy predicts a higher level of cellular plasticity in cancer stem cell populations compared to ordinary cancer cells. Importantly, network entropy also allows identification of key differentiation pathways. Our results are consistent with the view that pluripotency is a statistical property defined at the cellular population level, correlating with intra-sample heterogeneity, and driven by the degree of signaling promiscuity in cells. In summary, network entropy provides a quantitative measure of a cell's undifferentiated state, defining its elevation in Waddington's landscape.
国家哲学社会科学文献中心版权所有