首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:A label-free fluorescent probe for Hg2+ and biothiols based on graphene oxide and Ru-complex
  • 本地全文:下载
  • 作者:Linlin Wang ; Tianming Yao ; Shuo Shi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:4
  • 期号:1
  • DOI:10.1038/srep05320
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:A novel, selective and sensitive switch-on fluorescent sensor for Hg2+ and switch-off fluorescent probe for biothiols was developed by using [Ru(bpy)2(pip)]2+ as the signal reporter and graphene oxide (GO) as the quencher. Due to the affinity of GO towards single-stranded DNA (ss-DNA) and [Ru(bpy)2(pip)]2+, the three components assembled, resulting in fluorescence quenching. Upon addition of Hg2+, a double-stranded DNA (ds-DNA) via T–Hg2+–T base pairs was formed, and [Ru(bpy)2(pip)]2+ intercalated into the newly formed ds-DNA. Then, [Ru(bpy)2(pip)]2+ and ds-DNA were removed from the surface of GO, resulting in the restoration of fluorescence. Subsequently, upon addition of biothiols, Hg2+ was released from ds-DNA, due to the higher affinity of Hg2+ to the sulfur atoms of biothiols, which could induce ds-DNA unwinding to form ss-DNA. Then ss-DNA and [Ru(bpy)2(pip)]2+ were adsorbed on the surface of GO, the fluorescence of [Ru(bpy)2(pip)]2+ was quenched again. Therefore, the changes in emission intensity of [Ru(bpy)2(pip)]2+ directly correlated to the amount of detection target (Hg2+ or biothiols) in solution. The assay exhibited high sensitivity and selectivity, with the limits of detection for Hg2+, cysteine (Cys) and glutathione (GSH) to be 2.34 nM, 6.20 nM and 4.60 nM, respectively.
国家哲学社会科学文献中心版权所有