首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Algebraic dependencies and PSPACE algorithms in approximative complexity
  • 本地全文:下载
  • 作者:Zeyu Guo ; Nitin Saxena ; Amit Sinhababu
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2018
  • 卷号:2018
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    Testing whether a set f of polynomials has an algebraic dependence is a basic problem with several applications. The polynomials are given as algebraic circuits. Algebraic independence testing question is wide open over finite fields (Dvir, Gabizon, Wigderson, FOCS'07). The best complexity known is NP #P (Mittmann, Saxena, Scheiblechner, Trans.AMS'14). In this work we put the problem in AM coAM. In particular, dependence testing is unlikely to be NP-hard and joins the league of problems of "intermediate" complexity, eg. graph isomorphism & integer factoring. Our proof method is algebro-geometric-- estimating the size of the image/preimage of the polynomial map f over the finite field. A gap in this size is utilized in the AM protocols.

    Next, we study the open question of testing whether every annihilator of f has zero constant term (Kayal, CCC'09). We give a geometric characterization using Zariski closure of the image of f ; introducing a new problem called approximate polynomials satisfiability (APS). We show that APS is NP-hard and, using projective algebraic-geometry ideas, we put APS in PSPACE (prior best was EXPSPACE via Grobner basis computation). As an unexpected application of this to approximative complexity theory we get-- Over any field, hitting-set for VP can be designed in PSPACE. This solves an open problem posed in (Mulmuley, FOCS'12, J.AMS 2017); greatly mitigating the GCT Chasm (exponentially in terms of space complexity).

国家哲学社会科学文献中心版权所有