期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2019
卷号:116
期号:19
页码:9360-9369
DOI:10.1073/pnas.1808312116
出版社:The National Academy of Sciences of the United States of America
摘要:How knotted proteins fold has remained controversial since the identification of deeply knotted proteins nearly two decades ago. Both computational and experimental approaches have been used to investigate protein knot formation. Motivated by the computer simulations of Bölinger et al. [Bölinger D, et al. (2010) PLoS Comput Biol 6:e1000731] for the folding of the 6 1 -knotted α-haloacid dehalogenase (DehI) protein, we introduce a topological description of knot folding that could describe pathways for the formation of all currently known protein knot types and predicts knot types that might be identified in the future. We analyze fingerprint data from crystal structures of protein knots as evidence that particular protein knots may fold according to specific pathways from our theory. Our results confirm Taylor’s twisted hairpin theory of knot folding for the 3 1 -knotted proteins and the 4 1 -knotted ketol-acid reductoisomerases and present alternative folding mechanisms for the 4 1 -knotted phytochromes and the 5 2 - and 6 1 -knotted proteins.
关键词:protein topology ; knot folding ; protein knots