期刊名称:Journal of Data Analysis and Information Processing
印刷版ISSN:2327-7211
电子版ISSN:2327-7203
出版年度:2019
卷号:07
期号:02
页码:29-45
DOI:10.4236/jdaip.2019.72003
出版社:Scientific Research Publishing
摘要:The main aim of this research work is to be aware of the road traffic accident scenario, injurious effects and pattern in Bangladesh. Moreover we are interested to forecast the magnitude of road traffic accidents for the future so that decision makers can make appropriate decision for precaution. This study also provides an assessment of road traffic accidents in Bangladesh and its impact based on data collected for the period of 1971 to 2017. In this study we have tried to pick up the main reasons of road accidents and to observe the tremendous situation. The study observed that the general trends of road traffic accident (RTA), deaths and injuries reveal that the number of RTA, deaths and injuries increased gradually with little fluctuations form 1971 to 2007 and after 2007 there is a slow decreasing trend. Although the number of RTA and deaths observed decreasing trend in recent years, the ratio of number of deaths to number of accident increased significantly. The rate of register vehicles per 10,000 people increased moderately throughout the period but a sharp increment is exhibited from 2009. Highest percentage of RTA (34%) and deaths is due to RTA (32%) in Dhaka division while the lowest percentage of RTA (4%) in Barisal and Sylhet divisions and deaths is due to RTA (3%) in Barisal division. It is noticed that the maximum number of injuries occurred between ages 21 and 30 while the maximum number of deaths occurred between ages 11 and 30. Most of the RTA and deaths due to RTA are caused by run over by vehicles and head to head collision. The severity of occurring road accident and number of deaths are higher during the festive periods because of involving higher frequency of traveling than usual. The time plot shows that the graph maintains a decreasing movement from 2012 to 2015 but increases from 2015 to 2017. In the research an additive time series model approach is applied. It included the estimation of trend, seasonal variation and random variation using triple exponential smoothing method. We performed forecasting of RTA eliminating seasonal impact for the next three consecutive years (2018-2020) with 95% confidence interval using Holt-Winters exponential technique.