首页    期刊浏览 2024年12月06日 星期五
登录注册

文章基本信息

  • 标题:On a two-truths phenomenon in spectral graph clustering
  • 本地全文:下载
  • 作者:Carey E. Priebe ; Youngser Park ; Joshua T. Vogelstein
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2019
  • 卷号:116
  • 期号:13
  • 页码:5995-6000
  • DOI:10.1073/pnas.1814462116
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Clustering is concerned with coherently grouping observations without any explicit concept of true groupings. Spectral graph clustering—clustering the vertices of a graph based on their spectral embedding—is commonly approached via K -means (or, more generally, Gaussian mixture model) clustering composed with either Laplacian spectral embedding (LSE) or adjacency spectral embedding (ASE). Recent theoretical results provide deeper understanding of the problem and solutions and lead us to a “two-truths” LSE vs. ASE spectral graph clustering phenomenon convincingly illustrated here via a diffusion MRI connectome dataset: The different embedding methods yield different clustering results, with LSE capturing left hemisphere/right hemisphere affinity structure and ASE capturing gray matter/white matter core–periphery structure.
  • 关键词:spectral embedding ; spectral clustering ; graph ; network ; connectome
国家哲学社会科学文献中心版权所有