首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Nonstandard finite difference variational integrators for nonlinear Schrödinger equation with variable coefficients
  • 本地全文:下载
  • 作者:Cuicui Liao ; Xiaohua Ding
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2013
  • 卷号:2013
  • 期号:1
  • 页码:12
  • DOI:10.1186/1687-1847-2013-12
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, the idea of nonstandard finite difference discretization is employed to develop two variational integrators for the nonlinear Schrödinger equation with variable coefficients. These integrators are naturally multi-symplectic, and their multi-symplectic structures are presented by the multi-symplectic form formulas. Local truncation errors and convergences of the integrators are briefly discussed. The effectiveness and efficiency of the proposed schemes, such as the convergence order, numerical stability, and the capability in preserving the norm conservation, are verified in the numerical experiments.
  • 关键词:variational integrators ; nonstandard finite difference ; multi-symplectic ; Schrödinger equation
国家哲学社会科学文献中心版权所有