首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Periodicity and exponential stability of discrete-time neural networks with variable coefficients and delays
  • 本地全文:下载
  • 作者:Hui Xu ; Ranchao Wu
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2013
  • 卷号:2013
  • 期号:1
  • 页码:226
  • DOI:10.1186/1687-1847-2013-226
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Discrete analogues of continuous-time neural models are of great importance in numerical simulations and practical implementations. In the current paper, a discrete model of continuous-time neural networks with variable coefficients and multiple delays is investigated. By Lyapunov functional, continuation theorem of topological degree, inequality technique and matrix analysis, sufficient conditions guaranteeing the existence and globally exponential convergence of periodic solutions are obtained, without assuming the boundedness and differentiability of activation functions. To show the effectiveness of our method, an illustrative example is presented along with numerical simulations. MSC:34D23, 34K20, 39A12, 92B20.
  • 关键词:coincidence degree ; discrete neural networks ; variable coefficient ; exponential stability ; periodic solution ; M -matrix
国家哲学社会科学文献中心版权所有