摘要:In this paper, we investigate the existence, uniqueness and exponential asymptotic behavior of mild solutions to stochastic delay evolution equations perturbed by a sub-fractional Brownian motion S Q H ( t ) $S^{H}_{Q}(t)$ : d X ( t ) = ( A X ( t ) + f ( t , X t ) ) d t + g ( t ) d S Q H ( t ) $dX(t)=(AX(t)+f(t,X_{t}))\, dt+g(t)\, dS^{H}_{Q}(t)$ with index H ∈ ( 1 / 2 , 1 ) $H\in(1/2,1)$ .
关键词:existence and uniqueness ; stochastic delay evolution equations ; sub-fractional Brownian motion ; exponential decay in mean square