首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:The intervals of oscillations in the solutions of the Legendre differential equations
  • 本地全文:下载
  • 作者:Dimitris M Christodoulou ; James Graham-Eagle ; Qutaibeh D Katatbeh
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2016
  • 卷号:2016
  • 期号:1
  • 页码:46
  • DOI:10.1186/s13662-016-0778-6
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We have previously formulated a program for deducing the intervals of oscillations in the solutions of ordinary second-order linear homogeneous differential equations. In this work, we demonstrate how the oscillation-detection program can be carried out around the regular singular points x = ± 1 $x=\pm1$ of the Legendre differential equations. The solutions y n ( x ) $y_{n}(x)$ of the Legendre equation are predicted to be oscillatory in x < 1 $ x < 1$ for n ≥ 3 $n\geq3$ and nonoscillatory outside of that interval for all values of n. In contrast, the solutions y n m ( x ) $y_{n}^{m}(x)$ of the associated Legendre equation are predicted to be oscillatory for n ≥ 3 $n\geq3$ and m ≤ n − 2 $m\leq n-2$ only in smaller subintervals x < x ∗ < 1 $ x < x_{*} < 1$ , the sizes of which are determined by n and m. Numerical integrations confirm that such subintervals are distinctly smaller than ( − 1 , + 1 ) $(-1, +1)$ .
  • 关键词:oscillations ; second-order linear differential equations ; analytical theory ; transformations ; Legendre differential equations
国家哲学社会科学文献中心版权所有