首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Nonoscillation for higher-order nonlinear delay dynamic equations on time scales
  • 本地全文:下载
  • 作者:Chunyan Tao ; Taixiang Sun ; Qiuli He
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2016
  • 卷号:2016
  • 期号:1
  • 页码:58
  • DOI:10.1186/s13662-016-0786-6
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we investigate the nonoscillation of the higher-order nonlinear delay dynamic equation ( a n − 1 ( t ) ( a n − 2 ( t ) ( ⋯ ( a 1 ( t ) x Δ ( t ) ) Δ ⋯ ) Δ ) Δ ) Δ + u ( t ) g ( x ( δ ( t ) ) ) = R ( t ) for t ∈ [ t 0 , ∞ ) T , $$\begin{aligned} &\bigl(a_{n-1}(t) \bigl(a_{n-2}(t) \bigl(\cdots \bigl(a_)(t)x^{\Delta}(t)\bigr)^{\Delta}\cdots \bigr)^{\Delta}\bigr)^{\Delta}\bigr)^{\Delta} +u(t)g\bigl(x\bigl( \delta(t)\bigr)\bigr)=R(t) \\ &\quad\mbox{for } t\in [t_(, \infty)_{\mathbb{T}}, \end{aligned}$$ where T $\mathbb{T}$ is a scale with sup T = ∞ $\sup\mathbb{T}=\infty$ , t 0 ∈ T $t_(\in\mathbb{T}$ , and [ t 0 , ∞ ) T = { t ∈ T : t ≥ t 0 } $[t_(,\infty)_{\mathbb{T}}= \{t\in\mathbb{T}:t\geq t_(\}$ . We obtain some sufficient conditions for all solutions of this equation to be nonoscillatory.
  • 关键词:nonoscillation ; dynamic equation ; time scale
国家哲学社会科学文献中心版权所有