摘要:In this paper, we investigate the nonoscillation of the higher-order nonlinear delay dynamic equation ( a n − 1 ( t ) ( a n − 2 ( t ) ( ⋯ ( a 1 ( t ) x Δ ( t ) ) Δ ⋯ ) Δ ) Δ ) Δ + u ( t ) g ( x ( δ ( t ) ) ) = R ( t ) for t ∈ [ t 0 , ∞ ) T , $$\begin{aligned} &\bigl(a_{n-1}(t) \bigl(a_{n-2}(t) \bigl(\cdots \bigl(a_)(t)x^{\Delta}(t)\bigr)^{\Delta}\cdots \bigr)^{\Delta}\bigr)^{\Delta}\bigr)^{\Delta} +u(t)g\bigl(x\bigl( \delta(t)\bigr)\bigr)=R(t) \\ &\quad\mbox{for } t\in [t_(, \infty)_{\mathbb{T}}, \end{aligned}$$ where T $\mathbb{T}$ is a scale with sup T = ∞ $\sup\mathbb{T}=\infty$ , t 0 ∈ T $t_(\in\mathbb{T}$ , and [ t 0 , ∞ ) T = { t ∈ T : t ≥ t 0 } $[t_(,\infty)_{\mathbb{T}}= \{t\in\mathbb{T}:t\geq t_(\}$ . We obtain some sufficient conditions for all solutions of this equation to be nonoscillatory.
关键词:nonoscillation ; dynamic equation ; time scale