摘要:In this paper, we investigate the growth of meromorphic solutions of the differential equations f ( k ) + A k − 1 ( z ) f ( k − 1 ) + ⋯ + A 1 ( z ) f ′ + A 0 ( z ) f = 0 $$f^{(k)}+A_{k-1}(z)f^{(k-1)}+\cdots+A_)(z)f'+A_((z)f=0 $$ and f ( k ) + A k − 1 ( z ) f ( k − 1 ) + ⋯ + A 1 ( z ) f ′ + A 0 ( z ) f = F ( z ) , $$f^{(k)}+A_{k-1}(z)f^{(k-1)}+\cdots+A_)(z)f'+A_((z)f=F(z), $$ where A 0 ( z ) ≢ 0 , A 1 ( z ) , … , A k − 1 ( z ) $A_((z)\not\equiv0, A_)(z), \ldots, A_{k-1}(z)$ and F ( z ) ≢ 0 $F(z)\not \equiv0$ are meromorphic functions. A precise estimation of the hyper-order of meromorphic solutions of the above equations is given provided that there exists one dominant coefficient, which improves and extends previous results given by Belaïdi, Chen, etc.
关键词:complex differential equation ; meromorphic function ; hyper-order