首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Homoclinic orbits for a class of second order dynamic equations on time scales via variational methods
  • 本地全文:下载
  • 作者:You-Hui Su ; Xingjie Yan ; Daihong Jiang
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2017
  • 卷号:2017
  • 期号:1
  • 页码:47
  • DOI:10.1186/s13662-017-1098-1
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we study the existence of nontrivial homoclinic orbits of a dynamic equation on time scales T $\mathbb{T}$ of the form { ( p ( t ) u Δ ( t ) ) Δ + q σ ( t ) u σ ( t ) = f ( σ ( t ) , u σ ( t ) ) , △ -a.e. t ∈ T , u ( ± ∞ ) = u Δ ( ± ∞ ) = 0 . $$ \left \{ \textstyle\begin{array}{l} ( p(t)u^{\Delta}(t) ) ^{\Delta}+q^{\sigma}(t)u^{\sigma}(t)= f(\sigma(t),u^{\sigma}(t)),\quad \triangle\text{-a.e. } t\in\mathbb{T}, \\ u(\pm\infty)=u^{\Delta}(\pm\infty)=0. \end{array}\displaystyle \right . $$ We construct a variational framework of the above-mentioned problem, and some new results on the existence of a homoclinic orbit or an unbounded sequence of homoclinic orbits are obtained by using the mountain pass lemma and the symmetric mountain pass lemma, respectively. The interesting thing is that the variational method and the critical point theory are used in this paper. It is notable that in our study any periodicity assumptions on p ( t ) $p(t)$ , q ( t ) $q(t)$ and f ( t , u ) $f(t,u)$ are not required.
  • 关键词:time scales ; variational structure ; homoclinic orbits ; critical point theorem
国家哲学社会科学文献中心版权所有