首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Operational matrix approach for solving the variable-order nonlinear Galilei invariant advection–diffusion equation
  • 本地全文:下载
  • 作者:M. A. Zaky ; D. Baleanu ; J. F. Alzaidy
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2018
  • 卷号:2018
  • 期号:1
  • 页码:102
  • DOI:10.1186/s13662-018-1561-7
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we investigate numerical solution of the variable-order fractional Galilei advection–diffusion equation with a nonlinear source term. The suggested method is based on the shifted Legendre collocation procedure and a matrix form representation of variable-order Caputo fractional derivative. The main advantage of the proposed method is investigating a global approximation for the spatial and temporal discretizations. This method reduces the problem to a system of algebraic equations, which is easier to solve. The validity and effectiveness of the method are illustrated by an easy-to-follow example.
  • 关键词:Variable-order derivative ; Nonlinear Galilei invariant advection–diffusion equation ; Collocation method ; Legendre polynomials
国家哲学社会科学文献中心版权所有