首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:On the difference equation x n + 1 = a x n − l + b x n − k + f ( x n − l , x n − k ) $x_{n+1}=ax_{n-l}+bx_{n-k}+f ( x_{n-l},x_{n-k} )$
  • 本地全文:下载
  • 作者:Mahmoud A. E. Abdelrahman ; George E. Chatzarakis ; Tongxing Li
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2018
  • 卷号:2018
  • 期号:1
  • 页码:431
  • DOI:10.1186/s13662-018-1880-8
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we study the asymptotic behavior of the solutions of a new class of difference equations x n + 1 = a x n − l + b x n − k + f ( x n − l , x n − k ) , $$x_{n+1}=ax_{n-l}+bx_{n-k}+f ( x_{n-l},x_{n-k} ), $$ where l and k are nonnegative integers, a and b are nonnegative real numbers, the initial values x − s , x − s + 1 , … , x 0 $x_{-s}, x_{-s+1},\ldots, x_($ are positive real numbers, s = max { l , k } $s=\max\{l,k\}$ , and f ( u , v ) : ( 0 , ∞ ) 2 → ( 0 , ∞ ) $f (u,v ): ( 0,\infty ) ^,\rightarrow ( 0,\infty ) $ is a continuous and homogeneous real function of degree zero. We consider the stability, boundedness, and periodicity of the solutions of this equation which is the most general form of linear difference equations. Thus, the results in this paper apply to several other equations that are special cases of the studied equation. Moreover, we present a new method to study periodic solutions of period two.
  • 关键词:Difference equation ; Equilibrium point ; Local stability ; Periodic solution
国家哲学社会科学文献中心版权所有