首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Distributed Gibbs: A Linear-Space Sampling-Based DCOP Algorithm
  • 本地全文:下载
  • 作者:Duc Thien Nguyen ; William Yeoh ; Hoong Chuin Lau
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2019
  • 卷号:64
  • 页码:705-748
  • DOI:10.1613/jair.1.11400
  • 出版社:American Association of Artificial
  • 摘要:Researchers have used distributed constraint optimization problems (DCOPs) to model various multi-agent coordination and resource allocation problems. Very recently, Ottens et al. proposed a promising new approach to solve DCOPs that is based on confidence bounds via their Distributed UCT (DUCT) sampling-based algorithm. Unfortunately, its memory requirement per agent is exponential in the number of agents in the problem, which prohibits it from scaling up to large problems. Thus, in this article, we introduce two new sampling-based DCOP algorithms called Sequential Distributed Gibbs (SD-Gibbs) and Parallel Distributed Gibbs (PD-Gibbs). Both algorithms have memory requirements per agent that is linear in the number of agents in the problem. Our empirical results show that our algorithms can find solutions that are better than DUCT, run faster than DUCT, and solve some large problems that DUCT failed to solve due to memory limitations.
国家哲学社会科学文献中心版权所有