期刊名称:Potravinarstvo : Scientific Journal for Food Industry
印刷版ISSN:1338-0230
电子版ISSN:1337-0960
出版年度:2017
卷号:11
期号:1
页码:446-451
DOI:10.5219/785
语种:English
出版社:Association HACCP Consulting
摘要:Edible insect is appraised by many cultures as delicious and nutritionally beneficial food. In western countries this commodity is not fully appreciated, and the worries about edible insect food safety prevail. Electronic noses can become a simple and cheap way of securing the health safety of food, and they can also become a tool for evaluating the quality of certain commodities. This research is a pilot project of using an electronic nose in edible insect culinary treatment, and this manuscript describes the phases of edible insect culinary treatment and methods of distinguishing mealworm ( Tenebrio molitor ) and giant mealworm ( Zophobas morio ) using simple electronic nose. These species were measured in the live stage, after killing with boiling water, after drying and after inserting into the chocolate.The sensing device was based on the Arduino Mega platform with the ability to store the recorded data on the SD memory card, and with the possibility to communicate via internet. Data analysis shows that even a simple, cheap and portable electronic nose can distinguish between the different steps of culinary treatment (native samples, dried samples, samples enriched with chocolate for cooking) and selected species. Another benefit of the electronic nose could be its future introduction into the control mechanisms of food security systems (e.g. HACCP).
其他摘要:Edible insect is appraised by many cultures as delicious and nutritionally beneficial food. In western countries this commodity is not fully appreciated, and the worries about edible insect food safety prevail. Electronic noses can become a simple and cheap way of securing the health safety of food, and they can also become a tool for evaluating the quality of certain commodities. This research is a pilot project of using an electronic nose in edible insect culinary treatment, and this manuscript describes the phases of edible insect culinary treatment and methods of distinguishing mealworm (Tenebrio molitor) and giant mealworm (Zophobas morio) using simple electronic nose. These species were measured in the live stage, after killing with boiling water, after drying and after inserting into the chocolate.The sensing device was based on the Arduino Mega platform with the ability to store the recorded data on the SD memory card, and with the possibility to communicate via internet. Data analysis shows that even a simple, cheap and portable electronic nose can distinguish between the different steps of culinary treatment (native samples, dried samples, samples enriched with chocolate for cooking) and selected species. Another benefit of the electronic nose could be its future introduction into the control mechanisms of food security systems (e.g. HACCP).