首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Submodular Optimization in the MapReduce Model
  • 本地全文:下载
  • 作者:Paul Liu ; Jan Vondrak
  • 期刊名称:OASIcs : OpenAccess Series in Informatics
  • 电子版ISSN:2190-6807
  • 出版年度:2018
  • 卷号:69
  • 页码:1-10
  • DOI:10.4230/OASIcs.SOSA.2019.18
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Submodular optimization has received significant attention in both practice and theory, as a wide array of problems in machine learning, auction theory, and combinatorial optimization have submodular structure. In practice, these problems often involve large amounts of data, and must be solved in a distributed way. One popular framework for running such distributed algorithms is MapReduce. In this paper, we present two simple algorithms for cardinality constrained submodular optimization in the MapReduce model: the first is a (1/2-o(1))-approximation in 2 MapReduce rounds, and the second is a (1-1/e-epsilon)-approximation in (1+o(1))/epsilon MapReduce rounds.
  • 关键词:mapreduce; submodular; optimization; approximation algorithms
国家哲学社会科学文献中心版权所有