首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:A Log-Sobolev Inequality for the Multislice, with Applications
  • 本地全文:下载
  • 作者:Yuval Filmus ; Ryan O'Donnell ; Xinyu Wu
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:124
  • 页码:1-12
  • DOI:10.4230/LIPIcs.ITCS.2019.34
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let kappa in N_+^l satisfy kappa_1 + *s + kappa_l = n, and let U_kappa denote the multislice of all strings u in [l]^n having exactly kappa_i coordinates equal to i, for all i in [l]. Consider the Markov chain on U_kappa where a step is a random transposition of two coordinates of u. We show that the log-Sobolev constant rho_kappa for the chain satisfies rho_kappa^{-1} <= n * sum_{i=1}^l 1/2 log_2(4n/kappa_i), which is sharp up to constants whenever l is constant. From this, we derive some consequences for small-set expansion and isoperimetry in the multislice, including a KKL Theorem, a Kruskal - Katona Theorem for the multislice, a Friedgut Junta Theorem, and a Nisan - Szegedy Theorem.
  • 关键词:log-Sobolev inequality; small-set expansion; conductance; hypercontractivity; Fourier analysis; representation theory; Markov chains; combinatorics
国家哲学社会科学文献中心版权所有