首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:On Finite Monoids over Nonnegative Integer Matrices and Short Killing Words
  • 本地全文:下载
  • 作者:Stefan Kiefer ; Corto Mascle
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:126
  • 页码:1-13
  • DOI:10.4230/LIPIcs.STACS.2019.43
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let n be a natural number and M a set of n x n-matrices over the nonnegative integers such that M generates a finite multiplicative monoid. We show that if the zero matrix 0 is a product of matrices in M, then there are M_1, ..., M_{n^5} in M with M_1 *s M_{n^5} = 0. This result has applications in automata theory and the theory of codes. Specifically, if X subset Sigma^* is a finite incomplete code, then there exists a word w in Sigma^* of length polynomial in sum_{x in X} |x| such that w is not a factor of any word in X^*. This proves a weak version of Restivo's conjecture.
  • 关键词:matrix semigroups; unambiguous automata; codes; Restivo's conjecture
国家哲学社会科学文献中心版权所有