首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Transcription factor NF-κB is modulated by symbiotic status in a sea anemone model of cnidarian bleaching
  • 本地全文:下载
  • 作者:Katelyn M. Mansfield ; Nicole M. Carter ; Linda Nguyen
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • 页码:16025
  • DOI:10.1038/s41598-017-16168-w
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Transcription factor NF-κB plays a central role in immunity from fruit flies to humans, and NF-κB activity is altered in many human diseases. To investigate a role for NF-κB in immunity and disease on a broader evolutionary scale we have characterized NF-κB in a sea anemone (Exaiptasia pallida; called Aiptasia herein) model for cnidarian symbiosis and dysbiosis (i.e., "bleaching"). We show that the DNA-binding site specificity of Aiptasia NF-κB is similar to NF-κB proteins from a broad expanse of organisms. Analyses of NF-κB and IκB kinase proteins from Aiptasia suggest that non-canonical NF-κB processing is an evolutionarily ancient pathway, which can be reconstituted in human cells. In Aiptasia, NF-κB protein levels, DNA-binding activity, and tissue expression increase when loss of the algal symbiont Symbiodinium is induced by heat or chemical treatment. Kinetic analysis of NF-κB levels following loss of symbiosis show that NF-κB levels increase only after Symbiodinium is cleared. Moreover, introduction of Symbiodinium into naïve Aiptasia larvae results in a decrease in NF-κB expression. Our results suggest that Symbiodinium suppresses NF-κB in order to enable establishment of symbiosis in Aiptasia. These results are the first to demonstrate a link between changes in the conserved immune regulatory protein NF-κB and cnidarian symbiotic status.
国家哲学社会科学文献中心版权所有