首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Ischemic Postconditioning Protects Against Intestinal Ischemia/Reperfusion Injury via the HIF-1α/miR-21 Axis
  • 本地全文:下载
  • 作者:Zhongzhi Jia ; Weishuai Lian ; Haifeng Shi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • 页码:16190
  • DOI:10.1038/s41598-017-16366-6
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Intestinal ischemia/reperfusion (I/R) can lead to tissue damage associated with inflammation and mucosal apoptosis. Ischemic postconditioning (IPostC), a series of repeated, brief, intermittent periods of ischemia and reperfusion, has beneficial effects against I/R-induced injury in the heart and intestine, although the underlying mechanisms for these effects remain unclear. We evaluated the involvement of microRNA-21 (miR-21) in the protective effects of IPostC in a rat model of I/R induced by superior mesenteric artery occlusion and reopening. IPostC decreased I/R injury and suppressed apoptosis in the intestinal tissues concomitant with the induction of hypoxia inducible factor 1 alpha (HIF-1α) and the upregulation of miR-21. In vitro experiments in the intestinal epithelial cell line IEC-6 showed that hypoxia induced miR-21 and this effect was abolished by silencing HIF1-α, confirming the induction of miR-21 by HIF1-α, HIF1-α or miR-21 inhibition exacerbated I/R induced apoptosis, and programmed cell death 4 (PDCD4) and Fas-L was involved in miR-21 mediated anti-apoptotic effects on intestinal epithelial cells. Knockdown of miR-21 or inhibition of HIF1-α abolished the IPostC-mediated attenuation of intestinal injury and apoptosis and the downregulation of PDCD4 and Fas-L. A potential mechanism underlying the protective effect of IPostC may therefore involve the induction of miR-21 by HIF1-α and the attenuation of apoptosis via the downregulation of PDCD4 and Fas-L.
国家哲学社会科学文献中心版权所有