首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Ecto-ADP-ribosyltransferase ARTC2.1 functionally modulates FcγR1 and FcγR2B on murine microglia
  • 本地全文:下载
  • 作者:Björn Rissiek ; Stephan Menzel ; Mario Leutert
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • 页码:16477
  • DOI:10.1038/s41598-017-16613-w
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Mammalian ecto-ADP-ribosyltransferases (ecto-ARTs or also ARTCs) catalyze the ADP-ribosylation of cell surface proteins using extracellular nicotinamide adenine dinucleotide (NAD+) as substrate. By this post-translational protein modification, ecto-ARTs modulate the function of various target proteins. A functional role of ARTC2 has been demonstrated for peripheral immune cells such as T cells and macrophages. Yet, little is known about the role of ecto-ARTs in the central nervous system and on microglia. Here, we identified ARTC2.1 as the major ecto-ART expressed on murine microglia. ARTC2.1 expression was strongly upregulated on microglia upon co-stimulation with LPS and an ERK1/2 inhibitor or upon IFNβ stimulation. We identified several target proteins modified by ARTC2.1 on microglia with a recently developed mass spectrometry approach, including two receptors for immunoglobulin G (IgG), FcγR1 and FcγR2B. Both proteins were verified as targets of ARTC2.1 in vitro using a radiolabeling assay with 32P-NAD+ as substrate. Moreover, ADP-ribosylation of both targets strongly inhibited their capacity to bind IgG. In concordance, ARTC2.1 induction in WT microglia and subsequent cell surface ADP-ribosylation significantly reduced the phagocytosis of IgG-coated latex beads, which was unimpaired in NAD+/DTT treated microglia from ARTC2.1-/- mice. Hence, induction of ARTC2.1 expression under inflammatory conditions, and subsequent ADP-ribosylation of cell surface target proteins could represent a hitherto unnoticed mechanism to regulate the immune response of murine microglia.
国家哲学社会科学文献中心版权所有