摘要:The exploration, understanding and potential applications of 'Carbyne', the one-dimensional sp allotrope of carbon, have been severely limited due to its extreme reactivity and a tendency for highly exothermic cross-linking. Due to ill-defined materials, limited characterization and a lack of compelling definitive evidence, even the existence of linear carbons has been questioned. We report a first-ever investigation on the formation of carbyne-like materials during low temperature pyrolysis of biobased lignin, a natural bioresource. The presence of carbyne was confirmed by detecting acetylenic -C≡C- bonds in lignin chars using NMR, Raman and FTIR spectroscopies. The crystallographic structure of this phase was determined as hexagonal: a = 6.052 Å, c = 6.96 Å from x-ray diffraction results. HRSEM images on lignin chars showed that the carbyne phase was present as nanoscale flakes/fibers (~10 nm thick) dispersed in an organic matrix and showed no sign of overlapping or physical contact. These nanostructures did not show any tendency towards cross-linking, but preferred to branch out instead. Overcoming key issues/challenges associated with their formation and stability, this study presents a novel approach for producing a stable condensed phase of sp-bonded linear carbons from a low-cost, naturally abundant, and renewable bioresource.