摘要:Computer-Aided Nodule Assessment and Risk Yield (CANARY) is quantitative imaging analysis software that predicts the histopathological classification and post-treatment disease-free survival of patients with adenocarcinoma of the lung. CANARY characterizes nodules by the distribution of nine color-coded texture-based exemplars. We hypothesize that quantitative computed tomography (CT) analysis of the tumor and tumor-free surrounding lung facilitates non-invasive identification of clinically-relevant mutations in lung adenocarcinoma. Comprehensive analysis of targetable mutations (50-gene-panel) and CANARY analysis of the preoperative (≤3 months) high resolution CT (HRCT) was performed for 118 pulmonary nodules of the adenocarcinoma spectrum surgically resected between 2006-2010. Logistic regression with stepwise variable selection was used to determine predictors of mutations. We identified 140 mutations in 106 of 118 nodules. TP53 (n = 48), KRAS (n = 47) and EGFR (n = 15) were the most prevalent. The combination of Y (Yellow) and G (Green) exemplars, fibrosis within the surrounding lung and smoking status were the best discriminators for an EGFR mutation (AUC 0.77 and 0.87, respectively). None of the EGFR mutants expressing TP53 (n = 5) had a good prognosis based on CANARY features. No quantitative features were significantly associated with KRAS mutations. Our exploratory analysis indicates that quantitative CT analysis of a nodule and surrounding lung may noninvasively predict the presence of EGFR mutations in pulmonary nodules of the adenocarcinoma spectrum.