摘要:Chimera states are spatiotemporal segregations - stably coexisting coherent and incoherent groups - that can occur in systems of identical phase oscillators. Here we demonstrate that this remarkable phenomenon can also be understood in terms of Pecora and Carroll's drive-response theory. By calculating the conditional Lyapunov exponents, we show that the incoherent group acts to synchronize the coherent group; the latter playing the role of a response. We also compare the distributions of finite-time conditional Lyapunov exponents to the characteristic distribution that was reported previously for chimera states. The present analysis provides a unifying explanation of the inherently frustrated dynamics that gives rise to chimera states.