首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Electrospun nerve guide conduits have the potential to bridge peripheral nerve injuries in vivo
  • 本地全文:下载
  • 作者:Hanna K. Frost ; Tomas Andersson ; Sebastian Johansson
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:16716
  • DOI:10.1038/s41598-018-34699-8
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Electrospinning can be used to mimic the architecture of an acellular nerve graft, combining microfibers for guidance, and pores for cellular infiltration. We made electrospun nerve guides, from polycaprolactone (PCL) or poly-L-lactic acid (PLLA), with aligned fibers along the insides of the channels and random fibers around them. We bridged a 10 mm rat sciatic nerve defect with the guides, and, in selected groups, added a cell transplant derived from autologous stromal vascular fraction (SVF). For control, we compared to hollow silicone tubes; or autologous nerve grafts. PCL nerve guides had a high degree of autotomy (8/43 rats), a negative indicator with respect to future usefulness, while PLLA supported axonal regeneration, but did not outperform autologous nerve grafts. Transplanted cells survived in the PLLA nerve guides, but axonal regeneration was not enhanced as compared to nerve guides alone. The inflammatory response was partially enhanced by the transplanted cells in PLLA nerve grafts; Schwann cells were poorly distributed compared to nerve guide without cells. Tailor-made electrospun nerve guides support axonal regeneration in vivo, and can act as vehicles for co-transplanted cells. Our results motivate further studies exploring novel nerve guides and the effect of stromal cell-derived factors on nerve generation.
国家哲学社会科学文献中心版权所有