首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Integrated PTR-ToF-MS, GWAS and biological pathway analyses reveal the contribution of cow’s genome to cheese volatilome
  • 本地全文:下载
  • 作者:Sara Pegolo ; Matteo Bergamaschi ; Flavia Gasperi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:17002
  • DOI:10.1038/s41598-018-35323-5
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Volatile organic compounds (VOCs) are small molecules that contribute to the distinctive flavour of cheese which is an important attribute for consumer acceptability. To investigate whether cow's genetic background might contribute to cheese volatilome, we carried out genome-wide association studies (GWAS) and pathway-based analyses for 173 spectrometric peaks tentatively associated with several VOCs obtained from proton-transfer-reaction mass spectrometry (PTR-ToF-MS) analyses of 1,075 model cheeses produced using raw whole-milk from Brown Swiss cows. Overall, we detected 186 SNPs associated with 120 traits, several of which mapped close to genes involved in protein (e.g. CSN3, GNRHR and FAM169A), fat (e.g. AGPAT3, SCD5, and GPAM) and carbohydrate (e.g. B3GNT2, B4GALT1, and PHKB) metabolism. Gene set enrichment analysis showed that pathways connected with proteolysis/amino acid metabolism (purine and nitrogen metabolism) as well as fat metabolism (long-term potentiation) and mammary gland function (tight junction) were overrepresented. Our results provide the first evidence of a putative link between cow's genes and cheese flavour and offer new insights into the role of potential candidate loci and the biological functions contributing to the cheese volatilome.
国家哲学社会科学文献中心版权所有