摘要:concentration (Ci), stomatal conductance (Gs) and transpiration rate (Tr) compared with well watered plants. However, compared with control, leaf water content, SPAD value, cell membrane permeability, malondialdehyde (MDA), soluble sugar, protein proline content SOD and CAT activity were at peak under drought stress. The proteomic analysis revealed that among 3 339 identified proteins, drought stress increased and decreased abundance of 262 and 296 proteins, respectively, compared with control condition. These proteins were involved in carbohydrate energy metabolism, protein homeostasis, transcription, cell structure, cell membrane transport, signal transduction, stress and defense responses. These data not only provides a comprehensive dataset on overall proteomic changes in cassava leaves under drought stress, but also highlights the mechanisms by which euphorbiaceae plants can adapt to drought conditions.