首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Sheathless CE-MS based metabolic profiling of kidney tissue section samples from a mouse model of Polycystic Kidney Disease
  • 本地全文:下载
  • 作者:Elena Sánchez-López ; Guinevere S. M. Kammeijer ; Antonio L. Crego
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-018-37512-8
  • 出版社:Springer Nature
  • 摘要:Capillary electrophoresis-mass spectrometry (CE-MS) using a sheathless porous tip interface emerged as an attractive tool in metabolomics thanks to its numerous advantages. One of the main advantages compared to the classical co-axial sheath liquid interface is the increased sensitivity, while maintaining the inherent properties of CE, such as a high separation efficiency and low sample consumption. Specially, the ability to perform nanoliter-based injections from only a few microliters of material in the sample vial makes sheathless CE-MS a well-suited and unique approach for highly sensitive metabolic profiling of limited sample amounts. Therefore, in this work, we demonstrate the utility of sheathless CE-MS for metabolic profiling of biomass-restricted samples, namely for 20 µm-thick tissue sections of kidney from a mouse model of polycystic kidney disease (PKD). The extraction method was designed in such a way to keep a minimum sample-volume in the injection vial, thereby still allowing multiple nanoliter injections for repeatability studies. The developed strategy enabled to differentiate between different stages of PKD and as well changes in a variety of different metabolites could be annotated over experimental groups. These metabolites include carnitine, glutamine, creatine, betaine and creatinine. Overall, this study shows the utility of sheathless CE-MS for biomass-limited metabolomics studies.
国家哲学社会科学文献中心版权所有