首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:On Learning Linear Functions from Subset and Its Applications in Quantum Computing
  • 本地全文:下载
  • 作者:G{\'a}bor Ivanyos ; Anupam Prakash ; Miklos Santha
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:112
  • 页码:1-14
  • DOI:10.4230/LIPIcs.ESA.2018.66
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let F_{q} be the finite field of size q and let l: F_{q}^{n} -> F_{q} be a linear function. We introduce the Learning From Subset problem LFS(q,n,d) of learning l, given samples u in F_{q}^{n} from a special distribution depending on l: the probability of sampling u is a function of l(u) and is non zero for at most d values of l(u). We provide a randomized algorithm for LFS(q,n,d) with sample complexity (n+d)^{O(d)} and running time polynomial in log q and (n+d)^{O(d)}. Our algorithm generalizes and improves upon previous results [Friedl et al., 2014; Gábor Ivanyos, 2008] that had provided algorithms for LFS(q,n,q-1) with running time (n+q)^{O(q)}. We further present applications of our result to the Hidden Multiple Shift problem HMS(q,n,r) in quantum computation where the goal is to determine the hidden shift s given oracle access to r shifted copies of an injective function f: Z_{q}^{n} -> {0, 1}^{l}, that is we can make queries of the form f_{s}(x,h) = f(x-hs) where h can assume r possible values. We reduce HMS(q,n,r) to LFS(q,n, q-r+1) to obtain a polynomial time algorithm for HMS(q,n,r) when q=n^{O(1)} is prime and q-r=O(1). The best known algorithms [Andrew M. Childs and Wim van Dam, 2007; Friedl et al., 2014] for HMS(q,n,r) with these parameters require exponential time.
  • 关键词:Learning from subset; hidden shift problem; quantum algorithms; linearization
国家哲学社会科学文献中心版权所有