摘要:For a graph H, a graph G is an H-graph if it is an intersection graph of connected subgraphs of some subdivision of H. These graphs naturally generalize several important graph classes like interval graphs or circular-arc graph. This notion was introduced in the early 1990s by Biro, Hujter, and Tuza. Recently, Chaplick et al. initiated the algorithmic study of H-graphs by showing that a number of fundamental optimization problems like Clique, Independent Set, or Dominating Set are solvable in polynomial time on H-graphs. We extend and complement these algorithmic findings in several directions.
First we show that for every fixed H, the class of H-graphs is of logarithmically-bounded boolean-width. We also prove that H-graphs are graphs with polynomially many minimal separators. Pipelined with the plethora of known algorithms on graphs of bounded boolean-width and graphs with polynomially many minimal separators, this describes a large class of optimization problems that are solvable in polynomial time on H-graphs.
The most fundamental optimization problems among those solvable in polynomial time on H-graphs are Clique, Independent Set, and Dominating Set. We provide a more refined complexity analysis of these problems from the perspective of parameterized complexity. We show that Independent Set and Dominating Set are W[1]-hard being parameterized by the size of H plus the size of the solution. On the other hand, we prove that when H is a tree, Dominating Set is fixed-parameter tractable (FPT) parameterized by the size of H. Besides, we show that Clique admits a polynomial kernel parameterized by H and the solution size.