首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Propagation of Uncertainty for Volunteered Geographic Information in Machine Learning (Short Paper)
  • 本地全文:下载
  • 作者:Jin Xing ; Renee E. Sieber
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:114
  • 页码:1-6
  • DOI:10.4230/LIPIcs.GISCIENCE.2018.66
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Although crowdsourcing drives much of the interest in Machine Learning (ML) in Geographic Information Science (GIScience), the impact of uncertainty of Volunteered Geographic Information (VGI) on ML has been insufficiently studied. This significantly hampers the application of ML in GIScience. In this paper, we briefly delineate five common stages of employing VGI in ML processes, introduce some examples, and then describe propagation of uncertainty of VGI.
  • 关键词:Uncertainty; Machine Learning; Volunteered Geographic Information; Uncertainty Propagation
国家哲学社会科学文献中心版权所有