首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Abstract Data Types for Spatio-Temporal Remote Sensing Analysis (Short Paper)
  • 本地全文:下载
  • 作者:Martin Sudmanns ; Stefan Lang ; Dirk Tiede
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:114
  • 页码:1-7
  • DOI:10.4230/LIPIcs.GISCIENCE.2018.60
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Abstract data types are a helpful framework to formalise analyses and make them more transparent, reproducible and comprehensible. We are revisiting an approach based on the space, time and theme dimensions of remotely sensed data, and extending it with a more differentiated understanding of space-time representations. In contrast to existing approaches and implementations that consider only fixed spatial units (e.g. pixels), our approach allows investigations of the spatial units' spatio-temporal characteristics, such as the size and shape of their geometry, and their relationships. Five different abstract data types are identified to describe geographical phenomenon, either directly or in combination: coverage, time series, trajectory, composition and evolution.
  • 关键词:Big Earth Data; Semantic Analysis; Data Cube
国家哲学社会科学文献中心版权所有