首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Projection Theorems Using Effective Dimension
  • 本地全文:下载
  • 作者:Neil Lutz ; Donald M. Stull
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:117
  • 页码:1-15
  • DOI:10.4230/LIPIcs.MFCS.2018.71
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper we use the theory of computing to study fractal dimensions of projections in Euclidean spaces. A fundamental result in fractal geometry is Marstrand's projection theorem, which shows that for every analytic set E, for almost every line L, the Hausdorff dimension of the orthogonal projection of E onto L is maximal. We use Kolmogorov complexity to give two new results on the Hausdorff and packing dimensions of orthogonal projections onto lines. The first shows that the conclusion of Marstrand's theorem holds whenever the Hausdorff and packing dimensions agree on the set E, even if E is not analytic. Our second result gives a lower bound on the packing dimension of projections of arbitrary sets. Finally, we give a new proof of Marstrand's theorem using the theory of computing.
  • 关键词:algorithmic randomness; geometric measure theory; Hausdorff dimension; Kolmogorov complexity
国家哲学社会科学文献中心版权所有