首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Hardness Results for Consensus-Halving
  • 本地全文:下载
  • 作者:Aris Filos-Ratsikas ; S\oren Kristoffer Stiil Frederiksen ; Paul W. Goldberg
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:117
  • 页码:1-16
  • DOI:10.4230/LIPIcs.MFCS.2018.24
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The Consensus-halving problem is the problem of dividing an object into two portions, such that each of n agents has equal valuation for the two portions. We study the epsilon-approximate version, which allows each agent to have an epsilon discrepancy on the values of the portions. It was recently proven in [Filos-Ratsikas and Goldberg, 2018] that the problem of computing an epsilon-approximate Consensus-halving solution (for n agents and n cuts) is PPA-complete when epsilon is inverse-exponential. In this paper, we prove that when epsilon is constant, the problem is PPAD-hard and the problem remains PPAD-hard when we allow a constant number of additional cuts. Additionally, we prove that deciding whether a solution with n-1 cuts exists for the problem is NP-hard.
  • 关键词:PPAD; PPA; consensus halving; generalized-circuit; reduction
国家哲学社会科学文献中心版权所有